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1. Introduction 
This specification describes a simple web API that can be used with SoundBox software 

(http://cv8.org.uk/soundbox). The API allows 3rd party application developers to retrieve selected 

data from SoundBox while it’s executing, and to control some aspects of its execution. 

1.1 Server 
The SoundBox application itself acts as the http server so the API can only be used when SoundBox 

is running. 

1.2 Scope 
The API currently covers 4 main areas – timers, media, songs and background music. The timers API 

provides information on each of the talk timers and allows you to switch between each of the 

timer’s 3 states (ready, running and stopped). The media API lists available media items such as 

videos and images, and provides playback control. The songs API provides information on each of 

the 3 songs queued up in SoundBox for the meeting, allows you to specify song numbers, and 

allows you to start a song. The background music API provides status information and allows you to 

start and stop the background music. Finally, there is an event notification scheme that allows you 

to subscribe to common SoundBox events such as showing an image or starting a timer. 

The main rationale for developing the API is the desire to more easily distribute the SoundBox 

functions among operators at the KH. Currently a single operator may be responsible for 

microphone mixing, playing songs, media presentation, management of a conference system, 

timing, monitoring security cameras, etc. If remote mobile apps can be used to manage the 

SoundBox timers, or play the songs and media, then others may be enlisted to help. A secondary 

motivation is to ease integration with other IT systems such as electronic information boards where 

it might be useful to display timers and songs. 

2. API Description 

2.1 Base URI 
The base URI is as follows: 

http://soundbox_machine:8095/api/v7 

Please replace “soundbox_machine” with the name or IP address of the PC on which SoundBox is 

running. You must be able to connect to the machine from your client device, e.g. over a WiFi 

network.  

Note that the port (8095) is currently hard-coded in SoundBox but may be configurable in future 

versions. The API version designation allows the interface to be modified in future revisions whilst 

retaining backwards compatibility. The idea is that if you write client code against a particular 

version of the API it will still work when subsequent versions are released. 

Getting the Supported API Versions 

You can retrieve the lowest and highest API versions supported by a SoundBox installation by 

issuing a GET request at the following address: 

http://soundbox_machine:8095/api/ 

SoundBox responds with JSON structure in the following format: 

http://cv8.org.uk/soundbox
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  { 

    "lowVersion":[lowest version], 

    "highVersion":[highest version] 

  } 

The elements are described below 

 lowVersion – this is the lowest supported API version. Of course, we will try to retain 

backwards compatibility with all API versions. 

 highVersion – this is the highest supported API version. 

Unfortunately, this information is only available starting at version 2 of the API. If you issue the 

above request and you get a 503 http status code (service unavailable) then SoundBox probably 

supports v1 of the API only. 

You must enable the SoundBox web API (in Options, Settings, Remote Devices) and enable any 

specific APIs that are required by your client application as shown below: 

 

The “Enable clock webpage” setting is used to control a single web page served by SoundBox. This 

can be useful to test connectivity between your mobile device and SoundBox. Enable the setting, 

open a web browser on your client device and navigate to the following clock URI: 

http://soundbox_machine:8095/index 

The web browser should display the time of day. If you then start a timer in SoundBox, the browser 

should display the timer countdown value. 
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2.2 Security 
From v3 of the API (available in SoundBox v2.9.0.172), SoundBox implements an optional security 

scheme which, when enabled, requires a “remote access code” to be passed as a request header or 

as a query string parameter. To enable this feature, you must specify a code in the SoundBox 

Options, Settings, Remote Devices section as shown below: 

 

The value can be anything you like and is not restricted to digits. However, if it needs to be entered 

on a mobile device then you may want to keep it short and use digits. 

Please remember that unless communication between your clients and SoundBox is secured using 

SSL (https) then traffic will be in plain text and the remote access code will be available to a 

snooper. However, given the controlled environment of a WiFi network in a Kingdom Hall this is 

generally considered low risk. 

If you decide to use a remote access code, when constructing client-side requests you must either 

add a header with the key “ApiCode” or pass a query string parameter named “ApiCode”. The value 

should be as specified above in the SoundBox Options. See below for an example of the header: 

GET /api HTTP/1.1 

Host: localhost:8095 

ApiCode: 8273 

Content-Type: application/json 

 

Passing the remote access code by query string is illustrated below: 

http://soundbox_machine:8095/api/v7/media?ApiCode=8273 

 

The following API calls do not require the code: 

http://soundbox_machine:8095/api/ 

http://soundbox_machine:8095/api/v7/system 
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2.3 System 
The system API (from v3) provides access to some basic SoundBox information and has the 

following URI: 

http://soundbox_machine:8095/api/v7/system 

There is no need to provide a remote access code in your request. A GET request sent to the above 

address will return a single object in the following JSON format: 

{ 

  "machineName": "[name of the PC]", 

  "accountName": "[name of the current windows account]", 

  "soundBoxVersion": "[SoundBox software version]", 

  "apiVersion": { 

    "lowVersion": [lowest API version], 

    "highVersion": [highest API version] 

  }, 

  "congregationName": [congregation name], 

  "culture": { 

    "name": "[culture string]", 

    "isoCode2": "[ISO 2-character language code]", 

    "isoCode3": "[ISO 3-character language code]" 

  }, 

  "internet": { 

    "isChecked": [true/false], 

    "connected": [true/false/null] 

  }, 

  "workingSet": [working set memory in bytes] 

  "sessionId": "[SoundBox session Id string]" 

  "timerApiEnabled": [true/false], 

  "songsApiEnabled": [true/false], 

  "mediaApiEnabled": [true/false], 

  "eventNotificationsEnabled": [true/false], 

  "apiCodeRequired": [true/false] 

} 

 

Note that “eventNotificationsEnabled” is only available from v7 of the API onwards. 

A typical response is shown below: 
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{ 

  "machineName": "SoundPC", 

  "accountName": "Allington", 

  "soundBoxVersion": "2.9.0.171", 

  "apiVersion": { 

    "lowVersion": 1, 

    "highVersion": 3 

  }, 

  "congregationName": "", 

  "culture": { 

    "name": "en-GB", 

    "isoCode2": "en", 

    "isoCode3": "eng" 

  }, 

  "internet": { 

    "isChecked": true, 

    "connected": true 

  }, 

  "workingSet": 100184064, 

  "sessionId": "2b44993d-5539-483d-9c68-9ef005177d12" 

  "timerApiEnabled": true, 

  "songsApiEnabled": true, 

  "mediaApiEnabled": false, 

  "eventNotificationsEnabled": true, 

  "apiCodeRequired": true 

} 

 

The elements are described below 

 machineName – NetBIOS name of the machine on which SoundBox is running 

 accountName – current logged on user account name 

 soundBoxVersion – SoundBox version, e.g. “2.9.0.157” 

 apiVersion.lowVersion – lowest supported API version 

 apiVersion.highVersion – highest supported API version 

 congregationName – name of congregation (if specified) 

 culture.name – name of the current culture, e.g. “en-GB” 

 culture.isoCode2 – ISO 2 character language code 

 culture.isoCode3 – ISO 3 character language code 

 internet.isChecked – a Boolean value to denote whether SoundBox monitors internet 

connectivity 

 internet.connected – a nullable Boolean value to indicate whether the PC is connected to 

the internet (true) or not (false), or has not yet checked (null) 

 workingSet – the amount of physical memory mapped to the process context (in bytes) 

 sessionId – a unique identifier that corresponds to an instance of SoundBox. You can use 

this to determine whether SoundBox has been closed and re-opened since your last request 

 timerApiEnabled – a Boolean value indicating whether the timer can be controlled via the 

API 

 songsApiEnabled – a Boolean value indicating whether the songs can be controlled via the 

API 
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 mediaApiEnabled – a Boolean value indicating whether media can be controlled via the API 

 eventNotificationsEnabled – a Boolean value indicating whether it is possible to subscribe 

to event notifications (see the “Event Notifications” section for more information). This 

property is only available from v7 of the API onwards 

 apiCodeRequired – a Boolean value indicating whether use of the API requires a code. 

2.4 Timers 
The timers API has the following base URI: 

http://soundbox_machine:8095/api/v7/timers 

Getting the Timer Collection 

A GET request sent to the above address will return a collection of timer objects in the following 

JSON format. Note that “internalTabName” is only available from API v3 onwards, and 

“isApplicable” from v4 onwards: 

{ 

  "timerInfo": 

    [ 

      { 

        "internalName":"[internal name]", 

        "localisedTitle":"[localised title of timer]", 

        "localisedTabName":"[localised tab title]", 

        "internalTabName":"[internal tab title]", 

        "status":[status value], 

        "index":[index value], 

        "isEnabled":[true/false], 

        "isApplicable":[true/false], 

        "isStudentTalk":[true/false], 

        "plannedAllocationSecs":[planned allocation in secs], 

        "actualAllocationSecs":[actual allocation in secs], 

        "elapsedMillisecs":[elapsed millisecs], 

        "displayedMins":[number of mins displayed on timer], 

        "displayedSecs":[number of seconds displayed on timer], 

        "runningIndex":[index of currently running timer] 

      }, 

      { 

        ... 

      } 

    ] 

} 
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A typical example is shown below (truncated to show only 1 timer): 

{ 

  "timerInfo": 

    [ 

      { 

        "internalName":"OpeningComments", 

        "localisedTitle":"OPENING COMMENTS", 

        "localisedTabName":"Treasures", 

        "internalTabName":"Treasures", 

        "status":0, 

        "index":0, 

        "isEnabled":true, 

        "isApplicable":true, 

        "isStudentTalk":false, 

        "plannedAllocationSecs":180, 

        "actualAllocationSecs":180, 

        "elapsedMillisecs":0 

        "displayedMins":0, 

        "displayedSecs":0, 

        "runningIndex":-1 

      }, 

      { 

        ... 

      } 

    ] 

} 

 

The elements are described below 

 internalName – the name given to the timer internally in SoundBox (this doesn’t change 

and so can be used within client code, but see also “index” below) 

 localisedTitle – the localised name given to the timer (i.e. one that changes for each 

language version) 

 localisedTabName – the localised name that appears on the timer’s tab (there are several 

timer tabs in SoundBox; each one covering a meeting or part of a meeting) 

 internalTabName (from v3) – the internal name of the timer’s tab. “Treasures”, “Ministry”, 

“Living”, “Sunday” or “Miscellaneous”. Note that the “Sunday” tab has recently been 

labelled “Weekend”, and the “Miscellaneous” tab as “Custom” in the latest version of 

SoundBox, but the API continues to use “Sunday” and “Miscellaneous” as the internal tab 

names for the sake of continuity. 

 status – the status of the timer (0 = Ready, 1 = Running, 2 = Stopped) 

 index - a unique integer value for the timer. This value also denotes the timer’s zero-based 

ordinal position. The SoundBox API guarantees that the timer elements will be returned in 

ascending order sorted by index 

 isEnabled – a Boolean value to denote whether the timer is enabled (i.e. can be 

transitioned). This reflects the state of the timer in the SoundBox user interface, i.e. it is 

false when any timer is running 

 isApplicable (from v4) – a Boolean value to denote if a timer is applicable given the current 

date and user settings. For example, on the first midweek meeting of the month the timer 
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labelled “This week’s presentations” is normally applicable and the 3 student talk timers are 

not 

 isStudentTalk - a Boolean value to denote whether the timer is associated with a student 

talk 

 plannedAllocationSecs – the time (in seconds) that is allocated to the timer 

 actualAllocationSecs – the actual time (in seconds) that is allocated to the timer. This is 

usually the same as plannedAllocationSecs but may be different if SoundBox’s adaptive 

timing mode is enabled 

 elapsedMillisecs – the current time elapsed 

 displayedMins – the current ‘minutes’ value displayed on the timer 

 displayedSecs – the current ‘seconds’ value displayed on the timer 

 runningIndex (from API v2) – the index (zero-based) of the currently running timer (or -1 if 

no timers are running) 

Getting an Individual Timer 

A GET request sent to the following URL retrieves information about the specified timer: 

http://soundbox_machine:8095/api/v7/timers/[timer index] 

The “timer index” is an integer value corresponding to the index field of the timer (see “Getting the 

Timer Collection” above). In practice, the timer index values range from 0 – n (where n = number of 

timers minus 1), and this is unlikely to change because index also represents the ordinal position of 

the timer. 

A sample JSON response is shown below: 

  { 

    "internalName":"Reading", 

    "localisedTitle":"BIBLE READING", 

    "localisedTabName":"Treasures", 

    "internalTabName":"Treasures", 

    "status":0, 

    "index":3, 

    "isEnabled":true, 

    "isApplicable":true, 

    "isStudentTalk":true, 

    "plannedAllocationSecs":240, 

    "actualAllocationSecs":240, 

    "elapsedMillisecs":0 

    "displayedMins":0, 

    "displayedSecs":0 

    "runningIndex":-1 

  } 

 

Starting, Stopping and Resetting a Timer 

A POST request sent to the following URI transitions the specified timer to its next state: 

http://soundbox_machine:8095/api/v7/timers/[timer index] 
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Timers have 3 states: Ready, Running and Stopped. The states are strictly ordered and you can 

transition a timer from Stopped to Ready (which is equivalent to using the Reset command in the 

user interface). 

SoundBox provides a JSON response consisting of the new timer information. 

Note – SoundBox automatically stops all timers at 10 mins overtime. 

Sounding the Timer Bell 

The timer bell can be sounded (from API v2) by posting to the following URL: 

http://soundbox_machine:8095/api/v7/bell 

SoundBox returns a simple JSON object with the following structure: 

  { 

    "success":[true/false] 

  } 

2.5 Songs 
The songs API has the following base URI: 

http://soundbox_machine:8095/api/v7/songs 

Getting a Collection of Song Controls 

A GET request sent to the above address will return a collection of song control objects in the 

following JSON format: 

{ 

  "songInfo": 

    [ 

      { 

        "index":[index value], 

        "internalName":"[internal name of the song control]", 

        "localisedName":"[localised name of the song control]", 

        "title":"[the official localised song title]", 

        "status":"[the status of the song control]", 

        "isEnabled":[true/false], 

        "songNumber":[the official song number], 

        "lengthMillisecs":[the song duration] 

      }, 

      { 

        ... 

      } 

    ] 

} 
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A typical example is shown below (truncated to show only 1 song control): 

{ 

  "songInfo": 

    [ 

      { 

        "index":0, 

        "internalName":"Opening", 

        "localisedName":"OPENING SONG", 

        "title":"50 - The Divine Pattern of Love", 

        "status":0, 

        "isEnabled":true, 

        "songNumber":50, 

        "lengthMillisecs":184539 

      }, 

      { 

        ... 

      } 

    ] 

} 

 

The elements are described below: 

 index - a unique integer value for the song control. 0 = opening song, 1 = middle song, 2 = 

closing song. The SoundBox API guarantees that the song control elements will be returned 

in ascending sorted by index 

 internalName – the name given to the song control internally in SoundBox (this doesn’t 

change and so can be used within client code, but see also “index” above) 

 localisedName – the localised name given to the song control (i.e. one that changes for 

each language version) 

 title – the official title of the song (language-specific) 

 status – the status of the song control (0 = ready to play, 1 = playing, 2 = empty, i.e. no song 

number) 

 isEnabled – a Boolean value to denote whether the song control is enabled (i.e. can be 

played) 

 songNumber – the official song number (between 1 and 145 at time of writing). Note that if 

the song field is empty the returned songNumber value is 0 

 lengthMillisecs (from API v2) – the duration of the song in milliseconds 

Getting an Individual Song Control 

A GET request sent to the following URL retrieves information about the specified song control: 

http://soundbox_machine:8095/api/v7/songs/[control index] 

The song “control index” is an integer value corresponding to the index field of the song control (see 

“Getting a Collection of Song Controls” above). In the current version of the API there are 3 song 

controls and they have indexes 0, 1 and 2 (but please rely on the values retrieved from the collection 

instead of hard-coding these indexes). 
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A sample JSON response is shown below: 

  { 

    "songInfo": 

      [ 

        { 

          "index":2, 

          "internalName":"Closing", 

          "localisedName":"CLOSING SONG", 

          "title":"133 - Seek God for Your Deliverance", 

          "status":0, 

          "isEnabled":true, 

          "songNumber":133, 

          "lengthMillisecs":145555 

        }, 

        { 

          ... 

        } 

      ] 

  } 

 

Note that if the song field in SoundBox is empty the returned songNumber value is 0. 

Specify a Song Number (from API v6 only) 

A POST request sent to the following URI will change the number of the specified song: 

http://soundbox_machine:8095/api/v7/songs/[control index]/[number] 

SoundBox provides a JSON response consisting of the new song control information. 

For example, to change the opening song to song 123 you would POST to this URI: 

http://soundbox_machine:8095/api/v7/songs/0/123 

You can clear one of the song controls by specifying song 0. So a POST to the following URI would 

clear the middle song: 

http://soundbox_machine:8095/api/v7/songs/1/0 

Playing and Stopping a Song 

A POST request sent to the following URI will toggle the status of the specified song (between 

playing and stopped): 

http://soundbox_machine:8095/api/v7/songs/[control index] 

SoundBox provides a JSON response consisting of the new song control information. 

A client would not usually stop a song; it is usual for SoundBox to play a song to completion when it 

then stops automatically. You can detect when a song has finished by polling the song control and 

checking the status value (the lengthMillisecs property may be useful in this respect). 

2.6 Background Music 
The background music API (available from v6 of the API) has the following base URI: 
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http://soundbox_machine:8095/api/v7/background-music 

Getting the Status of Background Music 

A GET request sent to the following URI will return status information about the background music: 

http://soundbox_machine:8095/api/v7/background-music 

A sample JSON response is shown below: 

{ 

  "status": 0, 

  "autoStopEnabled": true, 

  "autoStopped": false 

} 

  

The elements are described below: 

 status – the status of background music. 0 = not playing, 1 = playing, 2 = not available (e.g. 

if a song is being played) 

 autoStopEnabled - a Boolean value to denote whether background music is set to stop 

automatically before the start of the meeting 

 autoStopped - a Boolean value to indicate if the music has stopped automatically (via the 

auto stop background music option) 

Playing and Stopping Background Music 

A POST request sent to the following URI will start or stop the background music (depending on the 

JSON specified in the body of the request): 

http://soundbox_machine:8095/api/v7/background-music 

A typical body is shown below: 

{ 

  "action": "play" 

} 

 

The action element specifies the operation to perform. Possible values for action are described 

below: 

 play – starts the background music 

 stop – stops the background music 

SoundBox responds with success (http status code 200) if all is well. Note that when background 

music is stopped it takes a few seconds to fade out. During this time the background music status is 

still “playing”. 

2.7 Media 
The media API has the following root URI: 

http://soundbox_machine:8095/api/v7/media 

Getting the Media List 
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A GET request at the media URI gets a list of all media items. A sample JSON response is shown 

below: 

{ 

  "mediaInfo": [ 

    { 

      "id": "5015102", 

      "title": "M1-010 A sister meditates on what she...", 

      "type": "Image" 

    }, 

    { 

      "id": "5015101", 

      "title": "M3-010 pk009—Jehovah . . . Created All Things", 

      "type": "Video" 

      "duration": 156000 

    }, 

    { 

      "id": "5015103", 

      "title": "M3-020 Martha", 

      "type": "Image" 

    }, 

    { 

      "id": "5015104", 

      "title": "M3-030 Mary sitting at Jesus’ feet listening...", 

      "type": "Image" 

    }, 

    { 

      "id": "5015105", 

      "title": "JW Broadcasting", 

      "type": "Url" 

    }, 

    { 

      "id": "5015106", 

      "title": "JW.org website", 

      "type": "Url" 

    }, 

    { 

      "id": "5015107", 

      "title": "Watchtower online library", 

      "type": "Url" 

    } 

  ] 

} 

 

Note that the response is limited to a maximum of 100 media items to assist system performance. 

SoundBox is designed in such a way as to encourage users to keep the media lists short so the 

restriction should not pose a difficulty. 

The elements are described below: 

 id – a string value that uniquely identifies the media item during a SoundBox session   
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 title – the media title as it appears in the SoundBox media list (but see below under Media 

Listing Codes) 

 type – the type of media represented. Possible values are “Video”, “Image”, “Url”, “Pdf”, 

“Audio”, and “Slideshow” 

 duration – the duration of the media in milliseconds (only applicable to items of media type 

“Video” and “Audio”). Only available from API v7 onwards 

Note that all “id” values are valid for the current SoundBox session only – they should not be 

persisted on the client. You can determine the current session Id using the “system” API. 

Note that “duration” is only available from v7 of the API onwards. 

Media Listing Codes 

SoundBox has a media service function which is optionally used to automatically download media 

files (as opposed to manually finding the relevant resources and adding them to the SoundBox 

media folders). When this service is used, the “title” attribute of the mediaInfo object begins with a 

Media Listing Code.  

The format of the Listing Code is as follows: 

MN-XYZ 

Where M is a character denoting whether the meeting is the midweek one (‘M’) or the weekend ne 

(‘W’). N is a single digit referring to the meeting part (on the weekend this is 1 for the Public Talk 

and 2 for Watchtower; and midweek it is 1, 2 or 3 for the standard meeting sections). Finally, XYZ 

are digits and designate the order of the media item in the meeting. These numbers are typically 

issued in increments of 10 to allow users to manually insert media in the gaps. 

Some examples of media listing codes: 

M1-010 

A media item from the first section (“Treasures…”) of the midweek meeting 

W2-030 

A media item (typically an image) in the Watchtower study 

The Media Listing Code is not shown in the SoundBox application; it is stripped from the title to 

make the user-interface more attractive. You can choose to do a similar thing if you need to display 

the media title to your users. Since the codes are always 6 characters in length and are followed by a 

space you can safely strip the first 7 characters from the title once you have determined that a 

listing code is present. 

Ordering 

The mediaInfo items returned in the GET request are sorted by listing code and then by title. Items 

with a listing code always appear before those without. The title sort order respects the current 

culture settings and is case-insensitive. 

Slideshows 

Where an item is of type “Slideshow” you can get a list of media items it contains using the 

following URI: 
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http://soundbox_machine:8095/api/v7/media/[slideshow id] 

A GET request at the following URI will list all the images in the specified slideshow: 

http://soundbox_machine:8095/api/v7/media/1314111 

Thumbnail Images 

You can retrieve thumbnail images for all Image, Video and Slideshow items using one of the 

following URIs: 

http://soundbox_machine:8095/api/v7/media/thumbs64/[media id] 

http://soundbox_machine:8095/api/v7/media/thumbs128/[media id] 

http://soundbox_machine:8095/api/v7/media/thumbs256/[media id] 

In v5 of the API, support for 512x512 was added: 

http://soundbox_machine:8095/api/v7/media/thumbs512/[media id] 

The images have a maximum size of 64x64, 128x128, 256x256 and 512x512 pixels respectively – 

choose the one that best meets the requirements of your application. Thumbnails retain the aspect 

ratio of the original image (they are not distorted). 

Thumbnails are available only for Images in v4 of the API. In v5 onwards, Video thumbnails are also 

available. 

Note that the thumbnail format is png up to and including API version 4. From v5 of the API, the 

thumbnail format is jpg. 

Controlling Media Playback 

A POST request sent to the media URI is used to control the playback of items. The identification of 

the media item and the control operation are specified in JSON format in the body of the POST 

request as shown below: 

  { 

    "id": "5584109", 

    "action": "play" 

  } 

 

The action element specifies the operation to perform on it. 

Possible values for action are described below: 

 play – plays a video or audio clip or shows an image, web site, etc 

 stop – stops a video or audio clip or hides an image, web site, etc 

 pause – pauses a video clip 

 next – displays the next photo in a slideshow 

 prev – displays the previous photo in a slideshow 

 blank – displays a blank slide in a slideshow 

 

SoundBox responds with success (http status code 200) if all is well. Additionally, an object is 

returned which in some circumstances (notably slideshow navigation) can provide extra 
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information. For example, the following response might be obtained while navigating a slideshow 

using the “next” action: 

  { 

    "id": "3422110", 

    "action": "next", 

    "slideIndex": 3, 

    "slideId": "3422121" 

  } 

 

 slideIndex refers to the zero-based index into the slideshow 

 slideId is the mediaId of the actual image currently being shown 

If there is an error condition SoundBox provides an error code as described under “Error Handling” 

below. 

Jumping into a Slideshow 

With slideshows, you can also use the “play” action to jump to a specified slide. Simply add a 

“slideIndex” value to the body of your request as illustrated below: 

  { 

    "id": "9436110", 

    "slideIndex": 10, 

    "action": "play" 

  } 

 

In the above example, “id” is the slideshow media id, and slideIndex is the zero-based slide number 

in the sequence. Once you have ‘jumped’ into a slideshow using the above syntax you can continue 

by using “next”, “prev” and “stop”, or you can jump to another slide in the sequence. 

Up to v4 of the API you can use this technique only during an active slideshow (i.e. a slideshow must 

always start at the first slide). From v5 of the API, it can also be used to start a slideshow at an 

offset. 

SoundBox Mode 

When the API is used to control media, SoundBox displays a notification message alerting the 

operator as shown below: 

 

In this situation, it is possible for the operator to control media at the same time, requiring 

cooperation to make it worth smoothly! 
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2.8 Media Status 
The media status API has the following root URI: 

http://soundbox_machine:8095/api/v7/media-status 

The API is used to determine the status of current SoundBox media playback and to make generic 

control operations. 

Getting Media Status 

A GET request to the above URI retrieves the current status object in the following form: 

{ 

  "status": [current status] 

  "id": [id of the current media item], 

  "title": [title of the current item], 

  "type": [type of the current item], 

  "slideId": [id of the current slide in a slideshow], 

  "slideIndex": [index of the current slide in a slideshow], 

  "duration": [duration of media in millisecs], 

  "position": [position of media in millisecs] 

} 

 

An example is shown below: 

{ 

  "status": "Inactive", 

  "id": "9031101", 

  "title": "Brothers—Reach Out for a Fine Work", 

  "type": "Video", 

  "duration": 123000, 

  "position": 4560, 

} 

 

The elements are described below: 

 status – The current status of media playback. Possible values are “Inactive”, Active” and 

“Paused” (where “Paused” is only applicable to video items) 

 id – The id of the current media item. This is omitted if no media item is currently selected 

in SoundBox 

 title – The title of the current media item (if one is selected) 

 type – The type of the current media item if one is selected. Possible values are “Video”, 

“Image”, “Url”, “Pdf”, “Audio”, and “Slideshow” 

 slideId – the id of the current slide in a slideshow (only applicable to items of type 

“Slideshow”) 

 slideIndex – the zero-based index of the current slide in a slideshow (only applicable to 

items of type “Slideshow”) 

 duration – the duration of the media in milliseconds (only applicable to items of type 

“Video” and “Audio”). Only available from API v7 onwards 

 position – the current playback position of the media in milliseconds (only applicable to 

items of type “Video” and “Audio”). Only available from API v7 onwards 

http://soundbox_machine:8095/api/v4/media-status
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Notes: 

 “duration” and “position” are only available from v7 of the API onwards. 

 The duration and position may not be available until the media has been playing for a 

second or so. 

Changing Media Status 

You can also control the current media item using the media status API. This is achieved by issuing a 

POST request to the URI specifying the relevant action. For example, the following JSON body 

starts to play the current item: 

{ 

    "action": "play" 

} 

 

The API responds with the media status as reported by SoundBox following the specified action. 

The following example shows how to stop the current media item (without having to know its 

identity): 

{ 

    "action": "stop" 

} 

 

Note that the “media status” API operates on the current media item. However, if you want more 

control over a specific media item then please use the “media” API described in the previous 

section. 

2.9 Local Date / Time 
You can get the current SoundBox date/time using this URI: 

http://soundbox_machine:8095/api/v7/datetime 

A sample JSON response is shown below: 

  { 

    "year":2015, 

    "month":12, 

    "day":17, 

    "hour":15, 

    "min":11, 

    "second":51 

  } 

 

The fields are self-explanatory. If you want to display the “current time” in your client application, 

then it may be best to read the SoundBox local time at application startup and then store the 

difference between that and your device’s local time - thus allowing you to display the SoundBox 

time whenever needed. Note that the latency of your network will affect the accuracy of the 

response value. 
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2.10 Error Handling 
Standard http error codes are used where possible. A successful request meets with a response 

having an “ok” status code (200), but suppose you attempt to GET a song that doesn’t exist, e.g. by 

using the following address: 

http://soundbox_machine:8095/api/v7/songs/3 

In this case the SoundBox API returns an http error code 404 (“not found”) because there are only 3 

songs (with indexes 0 – 2). 

The SoundBox API may also return a JSON error object in the following format if more information 

is available: 

  { 

    "errorCode":[An internal error code], 

    "errorMessage":"[Description of the error]", 

    "conflictingId":"[id of any conflicting item]" 

  } 

 

The conflictingId element is not always present but can provide additional context about the error 

condition. For example, there follows a typical error object returned if you try to play a video when 

an image (with id = 1087107) is currently being displayed: 

  { 

    "errorCode": 1147, 

    "errorMessage": "Media busy", 

    "conflictingId": "1087107" 

  } 

 

Error Code List 

The following SoundBox error codes are used (returned in the JSON error object described above): 

Code Message and Description Http Status Code 

0 “Success” 200 (ok) 

1128 “Song control does not exist” – you have specified a song 
control index that doesn’t exist. For example, 
http://soundbox_machine:8095/api/v7/songs/3 

404 (not found) 

1129 “Timer does not exist” – you have specified a timer index 
that doesn’t exist. For example, 
http://soundbox_machine:8095/api/v7/timers/100 

404 (not found) 

1130 “Malformed URI” – you have specified a URI with too 
many segments. For example 
http://soundbox_machine:8095/api/v7/timers/1/foo 

400 (bad request) 

1131 “Malformed URI” – you have specified a URI with too few 
segments. For example 
http://soundbox_machine:8095/api/v7/ 

400 (bad request) 

1132 “Could not identify timer” – it wasn’t possible to identify 
a timer value in the URI. For example 
http://soundbox_machine:8095/api/v7/timers/abc 

400 (bad request) 
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1133 “Could not identify song control” – it wasn’t possible to 
identify a song control value in the URI. For example 
http://soundbox_machine:8095/api/v7/songs/abc 

400 (bad request) 

1134 “Malformed URI” – you have specified a prefix that 
SoundBox cannot handle. For example 
http://soundbox_machine:8095/api/v7/foobar/1 

400 (bad request) 

1135 “Wrong http method used” – you have used an http 
method that is not supported by the target resource. For 
example you can issue a POST request to the root of the 
timers resource 

405 (method not allowed) 

1136 “Could not play/stop song” – you have successfully issued 
a request to toggle the status of a song but SoundBox 
cannot fulfil the request (e.g. because another song is 
playing) 

409 (conflict) 

1137 “Could not transition timer” – you have successfully 
issued a request to transition a timer but SoundBox 
cannot fulfil the request (e.g. because another timer is 
running) 

409 (conflict) 

1138 “API version not supported” – you are trying to use an 
API version that is not supported by this version of 
SoundBox 

400 (bad request) 

1139 “Not available in selected API version” – you are trying to 
use part of the API that is not available in the API version 
that you specified in the URI 

400 (bad request) 

1140 “Invalid API code” – you have not specified a valid remote 
access code in the header of your request 

401 (unauthorised) 

1141 “No media target display” – the media target display is 
not set 

409 (conflict) 

1142 “Invalid media command” – the specified action is 
unknown or not applicable in the current context 

409 (conflict) 

1143 “Media not found” – the media item was not found 404 (not found) 

1144 “Unknown media tab name” – the specified media tab 
name is unknown 

400 (bad request) 

1145 “Bad media thumbnail key” 404 (not found) 

1146 “Slideshow end” – reached the end of the slideshow 404 (not found) 

1147 “Media busy” – another media item is already playing 409 (conflict) 

1148 “Not a slideshow” – the request is only valid for slideshow 
items 

400 (bad request) 

1149 “Already playing” – you tried to play an item that is 
already playing 

409 (conflict) 

1150 “Already stopped” – you tried to stop a media item that 
was not playing 

409 (conflict) 

1151 “API is not enabled” – the relevant API is not enabled 401 (unauthorised) 

1152 “Could not set song number” – it was not possible to set 
the song number (perhaps it is already playing or the 
number is not a valid song number) 

409 (conflict) 

1153 “Could not identify song number” – the song number 
specified in the URI is not a number 

400 (bad request) 

1154 “Invalid background music command” – the background 
music command is unknown or not applicable in the 
current context 

409 (conflict) 
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1155 “Subscription address not found” – a bad address was 
specified in an event notification subscription request 

400 (bad request) 

1156 “Subscription port not found” – a bad port number was 
specified in an event notification subscription request 

400 (bad request) 

5128 “Unknown error” – any other errors 500 (internal server error) 

 

Note that all errors are logged in the Windows event log. 

3. UDP Broadcast Response 
You can automatically retrieve the SoundBox server IP address by sending a UDP network 

broadcast to port 8095 with the ASCII-encoded text “SoundBox” in the payload. SoundBox 

responds to such a broadcast with a simple ASCII string containing the text “SoundBox” followed by 

a single tab character and the IP address of the host machine, e.g.: 

SoundBox 192.168.1.94 

 

This is a useful alternative (or addition) to iteratively probing the network or requiring the client to 

enter the IP address in a device. 

You must enable this feature in the SoundBox Options, Settings, Miscellaneous section. 

Note that UDP is not a reliable protocol and does not guard against corruption of network packets, 

nor guarantee the delivery of packets. You can perform your own error checking by broadcasting 

several times and comparing the responses – if they all give the same result then the value is very 

likely correct. 

4. Event Notifications 
The APIs described above allow you to request data from SoundBox or initiate commands. The 

event notifications mechanism works the other way around; SoundBox pushes notifications to your 

application when specific events occur, such as when a video is started, when an image is shown, 

etc. Notifications can be used to help integrate SoundBox with other audio-visual tools such as 

HDMI switches, cameras, video production software, etc. For example, it is possible to create an 

application that listens for SoundBox events and switches a video stream source to the PC’s media 

display when an image or video is shown. 

The notifications are delivered using JSON over TCP, and all have a similar content as illustrated 

below: 

{ 

  "event": "StartVideo", 

  "stamp": "2016-10-28T11:38:42", 

  "server": "192.168.0.12" 

} 

 

The elements of the Event object are described below: 

 event – The SoundBox event 

 stamp – the date and time at which the notification was sent (in ISO 8601 format) 

 server – the IP address of the SoundBox machine 
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Events include the following (most are self-explanatory): 

 StartSong – start of song 

 StopSong – end of song 

 StartVideo – start of video 

 StopVideo – end of video 

 PauseVideo – video paused 

 RestartVideo – video restarted after a pause 

 OpenBrowser – browser opened to display a website or PDF 

 CloseBrowser – browser closed 

 StartAudio – audio file started 

 StopAudio – audio file stopped 

 ShowImage – image shown (but not applicable to background image) 

 HideImage – image hidden 

 StartSlideShow – slideshow started 

 StopSlideShow – slideshow stopped 

 PauseSlideShow – slideshow paused 

 RestartSlideShow – slideshow restarted after a pause 

 ShowLyrics – lyrics displayed 

 HideLyrics – lyrics hidden 

 StartCountdown – meeting countdown started 

 StopCountdown – meeting countdown stopped 

 StartBackgroundMusic – background music started 

 StopBackgroundMusic – background music stopped 

 CloseApp – SoundBox closing 

 StartTimer – a talk timer started 

 StopTimer – a talk timer stopped 

 StartRecording – audio recording started 

 StopRecording – audio recording stopped 

 StartSubscription – your subscription was successful 

 DropSubscription – your subscription was dropped because there are too many 

Note that there is no supplemental information delivered with each notification; you can use the 

relevant API to retrieve extra data if required.       

4.1 Subscribing 
To subscribe to event notifications, send a POST request to the following URL: 

http://soundbox_machine:8095/api/v7/events/subscribe 

Include in the body of your request, the TCP port and IP address that your application is listening on. 

A typical body is shown below: 

{ 

  "address": "192.168.0.14", 

  "port": 9550 

} 

 

If you omit the address, SoundBox will try to extract it from the request data. 
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SoundBox sends a status code, and a JSON representation of the Event object in the body of the 

response. Once you have subscribed, SoundBox will send event notifications to your application 

using the address of the subscribing machine and the port you specified in the subscription request. 

The first event you are likely to receive is a “StartSubscription” event as additional confirmation that 

the subscription is established. Notifications are dispatched using TCP.  

Notes 

 You can’t subscribe to a subset of the notifications; it’s all or nothing! 

 SoundBox supports a maximum of 25 subscriptions. If there are 25 subscriptions and you 

issue another subscription request, SoundBox drops the oldest subscription. If your 

subscription is dropped, you will receive a “DropSubscription” notification beforehand. 

 It is ok to subscribe while already subscribed; SoundBox simply updates your subscription 

date with the current date and time. 

4.2 Unsubscribing 
To unsubscribe to event notifications, send a POST request to the following URL: 

http://soundbox_machine:8095/api/v7/events/unsubscribe 

Include in the body of your request, your application’s endpoint details. A typical body is shown 

below: 

{ 

  "address": "192.168.0.15", 

  "port": 9550 

} 

 

SoundBox sends a status code, and a JSON representation of the Event object in the body of the 

response. 

4.2 Recent Events 
You can retrieve a list of the most recent 20 events by sending a GET request to the following URL: 

http://soundbox_machine:8095/api/v7/events/subscribe 

You do not need to subscribe to event notifications to use this API. The response is a collection of 

Event objects as illustrated below: 
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[ 

  { 

    "event": "StartSong", 

    "stamp": "2016-10-28T13:00:27", 

    "server": "192.168.1.94" 

  }, 

  { 

    "event": "ShowLyrics", 

    "stamp": "2016-10-28T13:00:30", 

    "server": "192.168.1.94" 

  }, 

  { 

    "event": "HideLyrics", 

    "stamp": "2016-10-28T13:03:54", 

    "server": "192.168.1.94" 

  }, 

  { 

    "event": "StopSong", 

    "stamp": "2016-10-28T13:03:54", 

    "server": "192.168.1.94" 

  }, 

  { 

    "event": "StartTimer", 

    "stamp": "2016-10-28T13:04:38", 

    "server": "192.168.1.94" 

  } 

] 

 

Note that the StartSubscription and DropSubscription events are not included in the list of recent 

events because they are client-specific. 

5. Usage Tips 

5.1 Network 
Try to keep the number of network calls to a minimum. In particular, if you want to dynamically 

update a timer’s value don’t attempt to poll the SoundBox server every 100 ms; poll it once to get a 

timer’s value then maintain the display using a client-based timer, perhaps polling again every 2 or 3 

seconds just to check that the timer hasn’t been stopped (e.g. by the SoundBox operator). You can 

also make use of the event notifications to reduce polling. 

5.2 Starting a Timer 
When starting a timer always retrieve a fresh copy of the timer data and check that it is enabled and 

not already running, and if you are displaying the timer, use the fresh value of the 

“actualAllocationSecs” property to use as the initial duration of your timer display. 

5.3 Synchronising a Client Timer 
If you want to display a dynamic timer in your client, there are a few important notes: 

1. When SoundBox starts a timer, it delays the actual start of countdown by 1500 ms. This is done 

for the sake of visual clarity when using the external timer monitor – allowing the initial timer value 
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to fade in before it starts to count down. Accordingly, you should add the 1500 ms delay into your 

client-side timer. 

2. Network latency can make it difficult to keep it exactly in step with the SoundBox timer (by the 

time you have retrieved the value of the SoundBox timer via a web API call the value may already be 

100s of milliseconds old). To do this successfully you can time the API call in your client and deduce 

the offset required to synchronise. The formula is as follows: 

 offset = ((t1 - t0) + (t2 - t3)) / 2 

where 

 t0 = client elapsed timer at request transmission 

 t1 = SoundBox elapsed timer at receipt of request 

 t2 = SoundBox elapsed timer at response transmission 

 t3 = client elapsed timer at receipt of response 

In SoundBox, and for the purpose of this calculation, we can safely assume that the t1 and t2 are 

identical, so the formula becomes: 

offset = ((t1 - t0) + (t1 - t3)) / 2 

offset = (2t1 - t0 - t3) / 2 

In your client code you know: 

 t0 = the elapsed timer value just before you send the request (=0 if you are starting a timer) 

 t1 = the SoundBox elapsed time as returned by the API call 

 t3 = the value of t0 plus the duration of the roundtrip API call (which you can time) 

3. When a timer reaches zero, SoundBox inserts a ‘grace second’ before starting to count again. This 

means that the timer rests at zero for 2 seconds! 

5.4 SoundBox Controls 
If you are using a client application to control timer and/or song functions, it is still possible for the 

same functions to be invoked within the SoundBox application. This means that the state of a timer 

or song control may change and any time. Consider implementing a regular check (e.g. once every 3 

seconds) to get the latest relevant information. Ideally, if a timer is started in the SoundBox 

application, the client should detect this and display the updated information. 

Note that the timerInfo object includes a runningIndex property (from API v2) which can be helpful in 

keeping the client timer in sync with SoundBox. 

5.5 Applications 
Several API-enabled SoundBox applications are available and can be a useful resource when 

developing against the API. Please see the SoundBox website for further details: 

http://cv8.org.uk/soundbox 
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